
J
H
E
P
0
7
(
2
0
0
7
)
0
1
5

Published by Institute of Physics Publishing for SISSA

Received: May 23, 2007

Accepted: July 4, 2007

Published: July 5, 2007

Note about integrability and gauge fixing for bosonic

string on AdS5 × S5

Josef Klusoň∗
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1. Introduction and summary

It is well known that the string sigma model on AdS5 × S5 is classically integrable [1].1

More precisely, the authors [1] found a Lax formulation of the equations of motion for

the classical Green-Schwarz superstring that leads to the existence of an infinite tower of

conserved charges in the classical world-sheet theory. It is important to stress that this Lax

formulation was derived for diffeomorphism invariant and κ symmetry invariant theory.

On the other hand it was shown recently in [5] that this fact does not quite coincide

with the standard definition of integrability. Integrability in the standard sense requires

not only the existence of a tower of conserved charges but also requires that these charges

be in involution. In other words the conserved charges should Poisson commute with each

other. The analysis presented in [5] explicitly demonstrated that for classical string moving

on R×S3 submanifold of AdS5 ×S5 that the Poisson brackets of conserved charges are in

involution. Further, in our recent paper [2] we performed the Hamiltonian analysis of the

same model on the world-sheet with general metric. We showed that in case when either

the diffeomorphism invariance of the world-sheet theory was preserved or the components

of the metric were fixed while the gauge symmetries generated by Virasoro generators were

not fixed the theory is integrable in the sense advocated in [5].

The situation becomes more involved in case when the gauge fixing functions depend on

the phase space variables. An example of such a gauge is uniform light-cone gauge [24, 25].2

As the modest contribution to the study of the integrability of the gauge fixed theory we

would like to present arguments that further support the claim that the string theory in

uniform light-cone gauge is integrable. We explicitly construct Lax connection for bosonic

sting on AdS5 × S5 in uniform light-cone gauge and we argue that this Lax connection is

flat.3 These arguments are based on the T-duality approach for the gauge fixing that was

introduced in [28].

1For some works considering integrability of sigma model on AdS5 × S
5, see [2 – 22]

2For recent discussion of this gauge, see for example [26, 27].
3For some previous works discussing the integrability of the gauge fixed theory, see [8, 13, 15].
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More precisely, we start with the bosonic string on AdS5 × S5, following formulation

presented in [11, 15]. Our goal is to study the question whether the theory [15, 24, 25, 27]

formulated in the uniform light-cone gauge is integrable as well. We proceed in following

way. In order to find the formulation of the theory in the uniform light-cone gauge we

use the approach presented in [26, 28] that is more convenient for the study of the gauge

fixed theory. On the other hand we argue, following [11, 15], that due to the fact that

the original Lax connection is not T-duality invariant we have to perform field redefinition

that introduces new Lax connection that is T-duality invariant. Using this improved Lax

connection we can define the Lax connection in T-dual background when we use the map

between original and T-dual variables. As the next step we perform the gauge fixing

following [26, 28]. Then we argue that the gauge fixed theory possesses the Lax connection

that is flat.

The extension of this work is as follows. It is straightforward to apply an approach

presented in this paper to the case of the full Green-Schwarz superstring, following very

nice analysis presented in [7]. On the other hand the second extension of this work is

more involved. Even if we were able to find Lax connection for gauge fixed theory the

Poisson bracket of the spatial components of Lax connection has not been determined

yet. While the calculation of the Poisson bracket between spatial components of Lax

connection is straightforward [2, 5] in case of the gauge fixed action it is much more

difficult [8]. Moreover, the Poisson bracket derived there does not seem to have the form

presented in [38, 39]. While an existence of Lax connection for gauge fixed theory implies

an existence of the infinite number of conserved charges the fact that the Poisson bracket

of Lax connection [8] does not take the standard form implies that it is not clear that these

charges are in involution. Clearly this issue deserves further study.

The organisation of this paper is as follows. In the next section (2) we introduce the

principal chiral model that defines bosonic string on AdS5 ×S5. We define Lax connection

that is invariant under T-duality and then we find Lax connection for the theory fixed

in uniform light-cone gauge. This is the main result of our paper. On the other hand in

order to have paper self-contained we include some well known materials to two appendices.

Explicitly, in appendix A we review the derivation of T-duality rules for sigma model. Then

in appendix B we present similar calculation in case of principal chiral model defined on

group manifold. Explicitly, we show how T-duality is implemented in case of principal chiral

model and its relation to integrability,4 following [29 – 32]. We argue that for some special

examples of principal chiral models T-dual models are also integrable. Unfortunately we

are not able to answer the question of integrability of T-dual of principal chiral model in

the full general case.

2. Integrability of gauge fixed bosonic string on AdS5 × S5

The motivation for the study of the question whether the integrability of the principal

chiral model is preserved under T-duality was to understand the integrability of the gauge

4For some reviews of T-duality, see [33 – 35].
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fixed action for string on AdS5 × S5. The problem is that this principal model does not

have such a simple form as an example given in the end of the previous section and hence

we have to proceed in different way.

Explicitly, let us consider action for bosonic string on AdS5 × S5 in the form

S = −
√

λ

4π

∫

dσdτ
√−γγαβgMN∂αxM∂βxN , (2.1)

where gMN are metric components of AdS5 × S5 whose explicit form is given below and

where xM label coordinates of this space.

In order to study the integrability properties of the theory we use the fact that we can

write the sigma model action (2.1) as [15]

S = −
√

λ

4π

∫

dσdτ
√−γγαβTr(JαJβ) , (2.2)

where

Jα = G−1∂αG , G =

(

ga 0

0 gs

)

. (2.3)

Here ga and gs are following 4 × 4 matrices

ga =











0 Z3 −Z2 Z∗
1

−Z3 0 Z1 Z∗
2

Z2 −Z1 0 −Z∗
3

−Z∗
1 −Z∗

2 Z∗
3 0











, gs =











0 Y1 −Y2 Y∗
3

−Y1 0 Y3 Y∗
2

Y2 −Y3 0 Y∗
1

−Y∗
3 −Y∗

2 −Y∗
1 0











, (2.4)

where Zk, k = 1, 2, 3 are the complex embedding coordinates for AdS5 and Yk , k = 1, 2, 3

are the complex embedding coordinates for sphere. The matrix ga is an element of the

group SU(2, 2) since it can be shown that

g†aEga = E , E = diag(−1,−1, 1, 1) (2.5)

provided the following condition is satisfied

Z∗
1Z1 + Z∗

2Z2 −Z∗
3Z3 = −1 . (2.6)

In fact ga describes embedding of an element of the coset space SO(4, 2)/SO(5, 1) into

group SU(2, 2) that is locally isomorphic to SO(4, 2). We use this isometry to work with

4 × 4 matrices rather with 6 × 6 ones. Note that due to the explicit choice of the coset

representative above there is not any gauge symmetry left. Quite analogously gs is unitary

gsg
†
s = 1 (2.7)

on condition that Y∗
1Y1 + Y∗

2Y2 + Y∗
3Y3 = 1. The matrix gs describes an embedding of an

element of the coset SO(6)/SO(5) into SU(4) being isomorphic to SO(6).

The variables Z,Y are related to the variables used in (2.1) as follows. The five sphere

S5 is parametrised by five variables: coordinates yi , i = 1, . . . , 4 and the angle variable

– 3 –
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φ. In terms of six real embedding coordinates Y A , A = 1, . . . , 6 obeying the condition

YAY A = 1 the parametrisation reads

Y1 = Y1 + iY2 =
y1 + iy2

1 + y2

4

, Y2 = Y3 + iY4 =
y3 + iy4

1 + y2

4

,

Y3 = Y5 + iY6 =
1 − y2

4

1 + y2

4

exp(iφ) . (2.8)

In the same way we describe the AdS5 space when we introduce four coordinates zi and

t. The embedding coordinates ZA that obey ZAZBηAB = −1 with the metric ηAB =

(−1, 1, 1, 1, 1,−1) is now parametrised as

Z1 = Z1 + iZ2 = −z1 + iz2

1 − z2

4

, Z2 = Z3 + iZ4 = −z3 + iz4

1 − z2

4

,

Z3 = Z0 + iZ5 =
1 + z2

4

1 − z2

4

exp(it) . (2.9)

Note that the line element for AdS5 × S5 takes the form

ds2 = −(1 + z2

4
)2

(1 − z2

4
)2

dt2 +
1

(1 − z2

4
)2

dzidzi +

(

1 − y2

4

1 + y2

4

)2

dφ2 +
1

(1 + y2

4
)2

dyidyi . (2.10)

Now using the fact that the bosonic string on AdS5 ×S5 can be written as principal chiral

model immediately implies an existence of the Lax connection

Lα =
1

1 − Λ2
(Jα − ΛγαβǫβγJγ) (2.11)

that obeys the flatness condition

∂αLβ − ∂βLα + [Lα, Lβ] = 0 . (2.12)

Note that γαβ in (2.11) is general world-sheet metric and Λ is a spectral parameter.

Then it was shown in [2] that the Poisson brackets of spatial components of Lax con-

nection implies an existence of infinite number of conserved charges that are in involution.

On the other hand it would be interesting to study the gauge fixed form of the theory

and whether the integrability is preserved in this case. In fact it was shown in [13, 15] that

for some form of the gauge fixing the theory is integrable as well. Now we would like to

give an alternative argument that supports the integrability of the gauge fixed theory in

uniform light-cone gauge.

Our approach is based on the definition of the gauge fixing introduced in [24, 26, 28].

Let us introduce following combinations

x+ = (1 − a)t + aφ , x− = φ − t ,

t = x+ − ax− , φ = x+ + (1 − a)x− , (2.13)

– 4 –
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where a is a free parameter from interval a ∈ [0, 1). Using these variables the action (2.1)

takes the form

S = −
√

λ

4π

∫

dσdτ
√−γγαβ(g++∂αx+∂βx+ + 2g+−∂αx+∂βx− +

+g−−∂αx−∂βx− + gmn∂αxm∂βxn) , (2.14)

where now

g++ = gtt + gφφ , g+− = −agtt + (1 − a)gφφ , g−− = gtta
2 + (1 − a)2gφφ . (2.15)

and xm = (yi, zi). As the next step we perform T-duality along x−. Using (A.9) we obtain

the relation between original and T-dual variables in the form

ǫαβ∂β x̃− = γαβ∂βx+g+− + γαβ∂βx−g−− , x̃m = xm , x̃+ = x+ . (2.16)

Then (2.16) also implies

∂αx− = − 1

g−−
(∂αx̃+g+− + γαβǫβγ∂γ x̃−) . (2.17)

Note that formula’s (A.11) also imply following forms of metric an two-form field compo-

nents in T-dual theory

g̃−− =
1

g−−
=

1

gtta2 + (1 − a)2gφφ
, g̃+− = 0 ,

g̃++ = g++ − g2
−+

g−−
=

gttgφφ

gtta2 + (1 − a)2gφφ
,

g̃mn = gmn , b̃−+ =
g−+

g−−
= −b̃+− =

−agtt + (1 − a)gφφ

gtta2 + (1 − a)2gφφ
. (2.18)

As the next step we integrate out the world-sheet metric γαβ and we obtain

γαβ = ∂αx̃M∂β x̃N g̃MN . (2.19)

Inserting this result to the T-dual action we obtain

S = −
√

λ

2π

∫

dσdτ

[

√

− det g̃MN∂αx̃M∂βx̃N +
1

2
εαβ b̃MN∂αx̃M∂βx̃N

]

.

Finally, the uniform gauge fixing is achieved as [26]

x̃+ =
τ

1 − a
, φ̃ =

J+σ

2π
. (2.20)

However since this approach is based on T-duality transformation of the action we come

to the puzzle since the Lax connection explicitly depends on the variables that parametrise

isometry directions. To resolve this problem we follow [11, 15].

– 5 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
5

We start with the original form of the action (2.2) with general world-sheet metric.

Then we use the fact that matrices gs, ga enjoy following property [11, 15]

gs(y, φ) = M(φ)ĝs(y)M(φ) ,

ga(z, t) = N(t)ĝa(z)N(t) , (2.21)

where

M(φ) =













e−
i
2
φ 0 0 0

0 e
i
2
φ 0 0

0 0 e
i
2
φ 0

0 0 0 e−
i
2
φ













, N(t) =













e
i
2
t 0 0 0

0 e
i
2
t 0 0

0 0 e−
i
2
t 0

0 0 0 e−
i
2
t













, (2.22)

and

ĝa =

























0
1+ z2

4

1− z2

4

−Z2 Z∗
1

−1+ z2

4

1− z2

4

0 Z1 Z∗
2

Z2 −Z1 0 −1+ z2

4

1− z2

4

−Z∗
1 −Z∗

2

1+ z2

4

1− z2

4

0

























, ĝs =

























0 Y1 −Y2

1− y2

4

1+
y2

4

−Y1 0
1− y2

4

1+
y2

4

Y∗
2

Y2 −1− y2

4

1+
y2

4

0 Y∗
1

−1− y2

4

1+
y2

4

−Y∗
2 −Y∗

1 0

























. (2.23)

Note that in this case the matrix G can be written as

G = MĜM , M =

(

N(t) 0

0 M(φ)

)

, Ĝ =

(

ĝa 0

0 ĝs

)

. (2.24)

Using this factorisation property we obtain

J = G−1dG = M−1

(

Ĝ−1dĜ +
i

2
Ĝ−1dΦĜ +

i

2
dΦ

)

M ≡ M−1ĴM , (2.25)

where

Φ =

(

Φ 0

0 Ψ

)

, (2.26)

and where Φ = diag(−φ, φ, φ,−φ) and Ψ = diag(t, t,−t,−t). Now using (2.25) we define

Lax connection L̂ from the original one (2.11) as

Lα = M−1L̂αM (2.27)

Then the flatness condition (2.12) implies

∂αLβ − ∂βLα + [Lα, Lβ] = M−1

(

∂α

(

L̂β − i

2
∂βΦ

)

− ∂β

(

L̂α − i

2
∂αΦ

)

+

+

[(

L̂α − i

2
∂αΦ

)

,

(

L̂β − i

2
∂βΦ

)])

M = 0 (2.28)

– 6 –
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Hence we see that instead of the original Lax connection we can find another one that is

again flat

Lα = L̂α(Φ) − i

2
∂αΦ =

1

1 − Λ2
(Ĵα(Φ) − Λγαβǫβγ Ĵγ(Φ)) − i

2
∂αΦ , (2.29)

where we explicitly stressed the dependence of Ĵ on Φ as follows from (2.25). The advantage

of the Lax connection L is that it now depends on a derivative of Φ only. This result

implies that the Lax connection L is useful for the definition of the Lax connection for

T-dual theory. Further, since the relations between original and T-dual variables are valid

on-shell we obtain that the Lax connection defined using the T-dual variables is flat as

well. More precisely, using (2.13) we replace t and φ in Φ,Ψ with x+, x− so that

Φ = (x+ + (1 − a)x−)Ω , Ω = diag(−1, 1, 1,−1) ,

Ψ = (x+ − ax−)Σ , Σ = diag(1, 1,−1,−1) . (2.30)

Then using the relations between original and T-dual variables (2.16) we find

∂αΦ =

[

∂αx̃+ − (1 − a)
1

g−−
(∂αx̃+g+− + γαβǫβγ∂γ x̃−)

]

Ω ,

∂αΨ =

[

∂αx̃+ + a
1

g−−
(∂αx̃+g+− + γαβǫβγ∂γ x̃−)

]

Σ . (2.31)

Then we can define Lax connection for T-dual theory in the form

Lα =
1

1 − Λ2
(Ĵα(Φ) − Λγαβǫβγ Ĵγ(Φ)) − i

2
∂αΦ , (2.32)

where now Φ depends on x̃M through the relations (2.31). Since (2.31) hold on-shell the

Lax connection defined in T-dual theory (2.32) is flat as well. Note that we still presume

that the world-sheet metric γαβ given in (2.32) is general. However as the next step in the

gauge fixing procedure we integrate out it and we get (2.19). Again, since Lax connection

is flat for any metric it is flat for metric that is on-shell (2.19). Finally, we perform the

gauge fixing when we insert (2.20) into (2.31) and we obtain components ∂Φ for gauge

fixed theory

∂τΦ =

[

1

1 − a
− (1 − a)

J+

2π

γττ

g−−
√−γ

]

Ω ,

∂σΦ =
(1 − a)J+

2π

γστ√−γg−−
Ω ,

∂τΨ =

[

1

1 − a
+

aJ+

2π

γττ

g−−
√−γ

]

Σ .

∂σΨ = −aJ+

2π

γστ√−γg−−
Σ , (2.33)

where now

γττ =
1

(1 − a2)

gttgφφ

gtta2 + (1 − a)2gφφ
+ gmn∂τxm∂τx

n ,

γτσ = gmn∂τxm∂σxn ,

γσσ =
J2

+

4π2(gtta2 − (1 − a)2gφφ)
+ gmn∂σxm∂σxn . (2.34)

– 7 –
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As it is clear from arguments given above the Lax connection for theory in the uniform

light-cone gauge (2.20) is flat. We mean the study of the integrability of the gauge fixed

theory in the Lagrange formalism can be considered as an useful alternative to the analysis

presented in [13, 15].

A. T-duality for sigma model

In this appendix we review we introduce standard notation considering T-duality. We

start with the sigma model action that describes the propagation of closed string on the

background with several U(1) isometries

S = −
√

λ

4π

∫

dτdσ
√−γ[γαβ∂αφi∂βφjgij − ǫαβ∂αφi∂βφjbij +

+ 2∂αφi(γαβuβ,i − ǫαβvβ,i) + Lrest] . (A.1)

As usual we have introduced the effective string tension
√

λ
2π

that is identified with the ’t

Hooft coupling in the AdS/CFT correspondence, γαβ is worldsheet metric with Minkowski

signature that in conformal gauge is γαβ = (−1, 1) and ǫαβ = εαβ
√−γ

, ετσ = −εστ = 1. Next

we assume that the action is invariant under the U(1) isometry transformations that are

geometrically realised as shifts of the angle variables φi , i = 1, 2, . . . , d. In other words the

string background contains the d-dimensional torus T d. The action (A.1) explicitly shows

the dependence on φi and their coupling to the background fields gij , bij and uα,i, vα,i.

These background fields are independent on φi but can depend on other bosonic string

coordinates which are neutral under the U(1) isometry transformations. Finally Lrest

denotes the part of the Lagrangian that depends on other fields of the theory.

As previous discussion suggests the action (A.1) is invariant under the constant shift

of φi

φ′i(τ, σ) = φi(τ, σ) + ǫi . (A.2)

Corresponding Noether currents have the form

Jα
i = −

√
λ

2π

√−γ(γαβ∂βφjgji − ǫαβ∂βφjbij + γαβuβ,i − ǫαβvβ,i) (A.3)

and obeys the equation

∂αJα
i = 0 (A.4)

as a consequence of the equations of motion.

Now we are ready to study T-duality for this model. We closely follow [35]. Let us

start with the T-duality on a circle parametrised by φ1. As the next step we gauge the

shift symmetry φ′1 = φ1 + ǫ1 so that ǫ1 is now function of τ, σ. If we require that the action

is invariant under the non-constant transformation we have to introduce the appropriate

gauge field Aα in such a way that

∂αφ1 → (∂αφ1 + Aα) ≡ Dαφ1 . (A.5)

– 8 –
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At the same time we add to the action the term φ̃1ǫαβFαβ in order to assure that the gauge

field has trivial dynamics. The field φ̃1 is corresponding Lagrange multiplier. Then we

obtain the gauge invariant action

S = −
√

λ

4π

∫

dτdσ
√−γ[γαβDαφ1Dβφ1g11 + 2γαβDαφ1∂βφag1a + γαβ∂αφa∂βφbgab −

−ǫαβ∂αφa∂βφbbab − 2ǫαβDαφ1∂βφbb1b + (A.6)

+2Dαφ1(γαβuβ,1 − ǫαβvβ,1) + 2∂αφa(γαβuβ,a − ǫαβvβ,a) + φ̃1ǫαβFαβ + Lrest] ,

where a, b = 2, . . . , d. Now thanks to the gauge invariance we can fix the gauge φ1 = 0 so

that the action above takes the form

S = −
√

λ

4π

∫

dτdσ
√−γ[γαβAαAβg11 + 2γαβAα∂βφag1a + γαβ∂αφa∂βφbgab −

−ǫαβ∂αφa∂βφbbab − 2ǫαβAα∂βφbb1b + (A.7)

+2Aα(γαβuβ,1 − ǫαβvβ,1) + 2∂αφa(γαβuβ,a − ǫαβvβ,a) + φ̃1ǫαβFαβ + Lrest] .

If we now integrate φ̃1 we obtain that Fαβ = 0 and hence Aα = ∂αθ. Inserting back to the

action (A.7) we obtain the original action (A.1) after identification θ = φ1. On the other

hand if we integrate out Aα we obtain

Aα =
1

g11

(−∂αφag1a + γαβǫβρ∂ρφ
ab1a − (uα,1 − γαβǫβρvρ,1) − γαβǫβρ∂ρφ̃

1) . (A.8)

Since we have argued that Aα can be related to the original coordinate φ1 as Aα = ∂αφ1

the relation (A.8) implies following relation between original and T-dual variables φi and

φ̃i

ǫαρ∂ρφ̃
1 = −γαρg11∂ρφ

1 − γαρ∂ρφ
ag1a + ǫαρ∂ρφ

ab1a − γαρuρ,1 + ǫαρvρ,1 ,

φ̃a = φa . (A.9)

Now plugging the result (A.8) into the action above we obtain the action equivalent to (A.1)

S = −
√

λ

4π

∫

dτdσ
√−γ[γαβ∂αφ̃i∂β φ̃j g̃ij − ǫαβ∂αφ̃i∂βφ̃j b̃ij +

+2∂αφi(γαβ ũβ,i − ǫαβ ṽβ,i) + L̃rest] , (A.10)

where [36, 37]

g̃11 =
1

g11

, g̃ab = gab −
ga1g1b − b1ab1b

g11

, g̃1a =
b1a

g11

,

b̃ab = bab −
g1ab1b − b1ag1b

g11

, b̃1a =
g1a

g11

, b̃a1 = −g1a

g11

,

ũα,1 =
vα,1

g11

, ṽα,1 =
uα,1

g11

,

ũα,a = uα,a −
g1auβ,1 − b1avα,1

g11

,

ṽα,a = vα,a −
g1avα,1 − b1auα,1

g11

,

L̃rest = Lrest − γαβ uα,1uβ,1 − vα,1vβ,1

g11

+ ǫαβ uα,1vβ,1 − vα,1uβ,1

g11

. (A.11)
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These relations will be useful when we discuss the gauge fixed form of the bosonic string

on AdS5 × S5 in section (B). On the other hand in the next section we perform the same

T-duality analysis for the special case of the sigma model that can be written in the form

of principal chiral model.

B. T-duality for principal chiral model and integrability

Let us consider the special case of the sigma model action (A.1) that is known as principal

chiral model

S = −
√

λ

4π

∫

dσdτ
√−γγαβKABJA

α JB
β , (B.1)

where

J = G−1dG = JATA , (B.2)

and where G is a group element from the group G and where TA are generators of corre-

sponding algebra g that obey following relations

[TA, TB ] = fC
ABTC , Tr(TATB) = KAB , (B.3)

where KAB is invertible matrix and where fC
AB = −fC

BA are structure constants of the

algebra g. The indices A,B label components of the basis TA. If we parametrise the group

element with the fields xM we can write the current JA
α as

JA
α = EA

M∂αxM . (B.4)

Finally we introduced the metric

gMN = EA
MKABEB

N (B.5)

defined on some target manifold labelled with coordinates xM . In this interpretation EA
M

are vielbeins of the target manifold [40]. Note also that EA can be written as

EA = Tr(G−1dGTB)KBA (B.6)

and hence the line element ds2 can be written as

ds2 = Tr(G−1dGG−1dG) . (B.7)

It is well known that the principal chiral model (B.1) is integrable [40]. More precisely, we

can find Lax connection for the action (B.1) that is flat. Further, we can argue that this

model possesses infinite number of integrals of motion that are in involution [2].

Following [29] we now consider the case when algebra g contains Cartan sub algebra

Ti , [Ti, Tj ] = 0 , i = 1, . . . , d , Tr(TiTj) = Kij , (B.8)

where d is the rank of the algebra. Let us also parametrise the group element as

G = e
Pd

i=1
αiTih . (B.9)
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Using (B.9) we obtain

γαβTr(JαJβ) = γαβTr((h−1∂ααiTih + h−1∂αh)(h−1∂βαjTjh + h−1∂βh)) =

= γαβ∂ααiKij∂βαj + 2γαβ∂ααiHiβ + γαβTr(h−1∂αhh−1∂βh) , (B.10)

where

Hiα ≡ Tr(Ti∂αhh−1) . (B.11)

Now we are ready to study T-duality for this form of principal chiral model. In order to

have contact with the discussion performed in next section let us consider slightly more

general case. Explicitly, let us take first two α’s and consider following combination

αα = Γα
y γy , α = 1, 2 , x, y = 1, 2 , (B.12)

where Γx
y are constant parameters. Using (B.12) the action (B.1) can be written as

S = −
√

λ

4π

∫

dσdτ
√−γ[γαβ∂αγ1∂βγ1K ′

11 + 2γαβ∂αγ1∂βγ2K ′
12 + γαβ∂αγ2∂βγ2K ′

22 +

+γαβ∂ααa∂βαbKab + 2γαβ∂αγ1H ′
1β + 2γαβ∂αγ2H ′

2β +

+2γαβ∂ααaHaβ + γαβTr(h−1∂αhh−1∂βh)] ,

(B.13)

where we also presumed that the metric Kij is block diagonal so that Kαa = 0 , a, b =

3, . . . , d. In (B.13) we also introduced the notation

K ′
xy = Γα

xΓβ
yKαβ , H ′

xα = Γβ
xHβα . (B.14)

Let us now consider T -duality along the direction labelled with γ1. As in the previous

section we gauge the theory corresponding to the shift of γ1

∂αγ1 → Dαγ1 = ∂αγ1 + Aαγ1 . (B.15)

Then if we fix the gauge with γ1 = 0 the action takes the form

S = −
√

λ

4π

∫

dσdτ
√−γ[γαβAαAβK ′

11 + 2γαβAα∂βγ2K ′
12 + γαβ∂αγ2∂βγ2K ′

22 +

+γαβ∂ααa∂βαbKab + 2γαβAαH ′
1β +

+2γαβγ2H ′
2β + 2γαβ∂ααaHaβ + γαβTr(h−1∂αhh−1∂βh) + ǫαβφ̃Fαβ ] . (B.16)

If we integrate φ̃ we obtain ǫαβFαβ = 0 that can be solved with

Aα = ∂αγ1 (B.17)

and we recover the original action. On the other hand if we integrate Aα we obtain

Aα = − 1

K ′
11

[∂αγ1K ′
21 + H ′

1β + γαγǫγβ∂βφ̃] . (B.18)
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Since Aα = ∂αγ1 this equation determines the relation between original and dual variables

∂αγ1 = − 1

K ′
11

[∂αγ2K ′
21 + H ′

1β + γαγǫγβ∂βφ̃] . (B.19)

Inserting (B.19) into (B.16) we obtain dual action

S = −
√

λ

4π

∫

dτdσ
√−γ

[

γαβ∂αγ2∂βγ2

(

K ′
22 −

K ′2
12

K ′
11

)

+ γαβ∂αφ̃∂β φ̃
1

K ′
11

+

+2γαβ∂αγ2

(

H ′
2β − K ′

21

K ′
11

H ′
1β

)

+ γαβ∂ααa∂βαbKab +

+2γαβ∂ααaHaβ + γαβ

(

Tr(h−1∂αhh−1∂βh) − 1

K ′
11

H ′
1αH ′

1β

)

−

−∂αγ2∂βφ̃ǫαβ 2K ′
12

K ′
11

− ǫαβ∂βφ̃
2H ′

1α

K ′
11

]

. (B.20)

Let us now observe that we can write

H ′
xα = Γβ

xTr(h−1Tβhh−1∂αh) = Γβ
xTr(h−1TβhTA)KABTr(TBh−1∂αh) =

= Γβ
xEA

β KABEB
m∂αxm = Γβ

xgβm∂αxm ≡ g′xm∂αxm ,

K ′
xy = Γα

xΓβ
yTr(TαTβ) = Γα

xΓβ
ygαβ ≡ g′xy

(B.21)

and consequently

γαβ∂αγ2∂βγ2

(

K ′
22 −

K ′2
12

K ′
11

)

= γαβ∂αγ2∂βγ2

(

g′22 −
g′12g

′
12

g′11

)

,

γαβ∂αγ2

(

H ′
2β − K ′

21

K ′
11

H ′
1β

)

= γαβ

(

g′2m − g′12g
′
1m

g′11

)

∂αγ2∂βxm ,

γαβ

(

Tr(h−1∂αhh−1∂βh) − 1

K ′
11

H ′
1αH ′

1β

)

= γαβ

(

g′mn − g′1mg′1n

g′11

)

∂αxm∂βxn ,

∂αγ2∂β φ̃ǫαβ 2K ′
12

K ′
11

= ∂αγ2∂βφ̃ǫαβ g′12
g′11

− ∂αφ̃∂βγ2ǫαβ g′12
g′11

,

ǫαβ∂β φ̃
2H ′

1α

K ′
11

= ǫαβ∂αxm∂β φ̃
g′1m

g′11
− ǫαβ∂αφ̃∂βxm g′1m

g′11
. (B.22)

In other words T-dual action (B.20) has exactly the same form as the action (A.10) with

the metric and two form components given by Buscher’s rules (A.11) when we replace gMN

with g′MN .

Let us now restrict to the case when the metric g′MN is diagonal and consequently

H ′
xα = 0. Then, in the similar way as in [29] we introduce following generators of the sub

algebra of Cartan algebra

T̃2 = T ′
2 −

K ′
12

K ′
11

T ′
1 , T̃1 =

1

K ′
11

T ′
1 , T̃a = Ta (B.23)
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and consider following group element

G̃ = eα̃iT̃ih (B.24)

with corresponding current

J̃ = G̃−1dG̃ = h−1dα̃iT̃ih + h−1dh . (B.25)

Then we can write T-dual action (B.20) in the form

S = −
√

λ

4π

∫

dτdσ
√−γ

[

γαβTrJ̃αJ̃β − ∂αγ2∂βφ̃ǫαβ 2K ′
12

K ′
11

]

. (B.26)

Note that the last term can be written as
√

λ

2π

∫

dσdτ∂αγ2∂β φ̃εαβ 2K ′
12

K ′
11

=

√
λ

2π

∫

dσdτ∂α

[

γ2εαβ∂β φ̃
2K ′

12

K ′
11

]

−

−
√

λ

2π

∫

dσdτγ2∂α[εαβ∂β φ̃]
2K ′

12

K ′
11

(B.27)

and hence does not affect the equations of motion. The first term is total derivative and

can be discarded from the action and the second one vanishes due to the antisymmetry of

εαβ .

The fact that T-dual action (B.26) has again form of the principal chiral model 5

implies that T-dual theory is integrable as well. On the other hand the form of the group

element (B.9) is rather special. For example, the principal chiral model that describes

bosonic string on AdS5 × S5 does not have such a simple form.
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[34] E. Alvarez, L. Alvarez-Gaumé and Y. Lozano, An introduction to T duality in string theory,

Nucl. Phys. 41 (Proc. Suppl.) (1995) 1 [hep-th/9410237].

[35] A. Giveon and M. Roček, Introduction to duality, hep-th/9406178.

[36] T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987)

59.

[37] T.H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models, Phys.

Lett. B 201 (1988) 466.

[38] J.M. Maillet, New integrable canonical structures in two-dimensional models, Nucl. Phys. B

269 (1986) 54.

[39] J.M. Maillet, Hamiltonian structures for integrable classical theories from graded Kac-Moody

algebras, Phys. Lett. B 167 (1986) 401.

[40] J.M. Evans, M. Hassan, N.J. MacKay and A.J. Mountain, Local conserved charges in

principal chiral models, Nucl. Phys. B 561 (1999) 385 [hep-th/9902008].

– 15 –

http://jhep.sissa.it/stdsearch?paper=01%282006%29055
http://arxiv.org/abs/hep-th/0510208
http://jhep.sissa.it/stdsearch?paper=03%282007%29094
http://arxiv.org/abs/hep-th/0611169
http://arxiv.org/abs/hep-th/0702043
http://jhep.sissa.it/stdsearch?paper=09%282004%29038
http://arxiv.org/abs/hep-th/0406189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB471%2C217
http://arxiv.org/abs/hep-th/9601016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB415%2C71
http://arxiv.org/abs/hep-th/9309039
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB405%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB405%2C109
http://arxiv.org/abs/hep-th/9302033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB373%2C630
http://arxiv.org/abs/hep-th/9110053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C244%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C244%2C77
http://arxiv.org/abs/hep-th/9401139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C41%2C1
http://arxiv.org/abs/hep-th/9410237
http://arxiv.org/abs/hep-th/9406178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB194%2C59
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB194%2C59
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB201%2C466
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB201%2C466
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB269%2C54
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB269%2C54
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB167%2C401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB561%2C385
http://arxiv.org/abs/hep-th/9902008

